449 research outputs found

    Active structural acoustic control using the remote sensor method

    No full text
    Active structural acoustic control (ASAC) is an effective method of reducing the sound radiation from vibrating structures. In order to implement ASAC systems using only structural actuators and sensors, it is necessary to employ a model of the sound radiation from the structure. Such models have been presented in the literature for simple structures, such as baffled rectangular plates, and methods of determining the radiation modes of more complex practical structures using experimental data have also been explored. A similar problem arises in the context of active noise control, where cancellation of a disturbance is required at positions in space where it is not possible to locate a physical error microphone. In this case the signals at the cancellation points can be estimated from the outputs of remotely located measurement sensors using the “remote microphone method”. This remote microphone method is extended here to the ASAC problem, in which the pressures at a number of microphone locations must be estimated from measurements on the structure of the radiating system. The control and estimation strategies are described and the performance is assessed for a typical structural radiation problem

    An investigation of delayless subband adaptive filtering for multi-input multi-output active noise control applications

    No full text
    The broadband control of noise and vibration using multi-input, multi-output (MIMO) active control systems has a potentially wide variety of applications. However, the performance of MIMO systems is often limited in practice by high computational demand and slow convergence speeds. In the somewhat simpler context of single-input, single- output broadband control, these problems have been overcome through a variety of methods including subband adaptive filtering. This paper presents an extension of the subband adaptive filtering technique to the MIMO active control problem and presents a comprehensive study of both the computational requirements and control performance. The implementation of the MIMO filtered-x LMS algorithm using subband adaptive filtering is described and the details of two specific implementations are presented. The computational demands of the two MIMO subband active control algorithms are then compared to that of the standard full-band algorithm. This comparison shows that as the number of subbands employed in the subband algorithms is increased, the computational demand is significantly reduced compared to the full-band implementation provided that a restructured analysis filter-bank is employed. An analysis of the convergence of the MIMO subband adaptive algorithm is then presented and this demonstrates that although the convergence of the control filter coefficients is dependent on the eigenvalue spread of the subband Hessian matrix, which reduces as the number of subbands is increased, the convergence of the cost function is limited for large numbers of subbands due to the simultaneous increase in the weight stacking distortion. The performance of the two MIMO subband algorithms and the standard full-band algorithm has then been assessed through a series of time-domain simulations of a practical active control system and it has been shown that the subband algorithms are able to achieve a significant increase in the convergence speed compared to the full-band implementatio

    The 2006 Russia-Ukraine Natural Gas Dispute: A mechanisms based approach

    Get PDF
    This thesis addresses the factors which lead the Russian government to increase natural gas prices for Ukraine in 2006. Through the use of methodological individualism, an explanation which links system, state, and individual levels of analysis is constructed. The system level variables concerned include global energy prices and the increasing importance of Turkmen natural gas to Russia and other regional gas consumers. State level variables, include changes in Russia’s patrimonial society (changing source of rents, increased authoritarianism); and increasing state control over Russia’s natural gas industry. Changes in these conditioning factors influence individuals’ beliefs about their preferred source of rents, and the nature of their rent seeking and distributing. The resulting actions bring about variations in Russia’s natural gas price for Ukraine. This framework is tested over three time periods (1995-1999, 2000-2004, 2004-2008) selected based on the nature of the conditioning variables over those years. Evidence from these case studies suggests that the above mentioned factors played a large role in the Russian government’s decision. Further, it is concluded that methodological individualism offers a way to bring together system, state, and individual levels of analysis when explaining this event, and perhaps other events in international politics

    Early fossil record of Euarthropoda and the Cambrian Explosion

    Get PDF
    Euarthropoda is one of the best-preserved fossil animal groups and has been the most diverse animal phylum for over 500 million years. Fossil Konservat-Lagerstätten, such as Burgess Shale-type deposits (BSTs), show the evolution of the euarthropod stem lineage during the Cambrian from 518 million years ago (Ma). The stem lineage includes nonbiomineralized groups, such as Radiodonta (e.g., Anomalocaris) that provide insight into the step-by-step construction of euarthropod morphology, including the exoskeleton, biramous limbs, segmentation, and cephalic structures. Trilobites are crown group euarthropods that appear in the fossil record at 521 Ma, before the stem lineage fossils, implying a ghost lineage that needs to be constrained. These constraints come from the trace fossil record, which show the first evidence for total group Euarthropoda (e.g., Cruziana, Rusophycus) at around 537 Ma. A deep Precambrian root to the euarthropod evolutionary lineage is disproven by a comparison of Ediacaran and Cambrian lagerstätten. BSTs from the latest Ediacaran Period (e.g., Miaohe biota, 550 Ma) are abundantly fossiliferous with algae but completely lack animals, which are also missing from other Ediacaran windows, such as phosphate deposits (e.g., Doushantuo, 560 Ma). This constrains the appearance of the euarthropod stem lineage to no older than 550 Ma. While each of the major types of fossil evidence (BSTs, trace fossils, and biomineralized preservation) have their limitations and are incomplete in different ways, when taken together they allow a coherent picture to emerge of the origin and subsequent radiation of total group Euarthropoda during the Cambrian

    Co-receptor and co-stimulation blockade for mixed chimerism and tolerance without myelosuppressive conditioning

    Get PDF
    BACKGROUND: A major challenge in the application of marrow transplantation as a route to immunological tolerance of a transplanted organ is to achieve hematopoietic stem cell (HSC) engraftment with minimal myelosuppressive treatments. RESULTS: We here describe a combined antibody protocol which can achieve long-term engraftment with clinically relevant doses of MHC-mismatched bone marrow, without the need for myelosuppressive drugs. Although not universally applicable in all strains, we achieved reliable engraftment in permissive strains with a two-stage strategy: involving first, treatment with anti-CD8 and anti-CD4 in advance of transplantation; and second, treatment with antibodies targeting CD4, CD8 and CD40L (CD154) at the time of marrow transplantation. Long-term mixed chimerism through co-receptor and co-stimulation blockade facilitated tolerance to donor-type skin grafts, without any evidence of donor-antigen driven regulatory T cells. CONCLUSION: We conclude that antibodies targeting co-receptor and co-stimulatory molecules synergise to enable mixed hematopoietic chimerism and central tolerance, showing that neither cytoreductive conditioning nor 'megadoses' of donor bone marrow are required for donor HSC to engraft in permissive strains

    QUANTITATIVE ANALYSIS OF REPAIRED AND UNREPAIRED DAMAGE TO TRILOBITES FROM THE CAMBRIAN (STAGE 4, DRUMIAN) IBERIAN CHAINS, NE SPAIN

    Get PDF
    Repaired fossil skeletons provide the opportunity to study predation rates, repair mechanisms, and ecological interactions in deep time. Trilobites allow the study of repaired damage over long time periods and large geographic areas due to their longevity as a group, global distribution, and well-preserved mineralized exoskeletons. Repair frequencies on trilobites from three sites representing offshore marine environments in the Iberian Chains (Spain) show no injuries on 45 complete redlichiid thoraces from Minas Tierga (Huérmeda Formation, Cambrian Series 2, Stage 4), or 23 complete Eccaparadoxides pradoanus thoraces from Mesones de Isuela (Murero Formation, Cambrian Series 3, Drumian). Ten injuries on 69 E. pradoanus thoraces from Purujosa (Murero Formation, Cambrian Series 3, Drumian) were noted. There is no evidence for laterally asymmetric predation or size selection on the trilobites in this study. Weak evidence for selection for the rear of the thorax is documented. A series of injured trilobites illustrates four stages of the healing process. Analysis of injury locations and frequency suggests that injuries to these trilobites are predatory in origin. Semilandmark analysis of previously described exoskeletons with unrepaired damage assigned to the ichnotaxon Bicrescomanducator serratus alongside newly collected damaged exoskeletons from Purujosa (Mansilla and Murero Formations, Stage 5, Drumian), Mesones de Isuela (Murero Formation, Drumian), and Minas Tierga (Huérmeda Formation, Stage 4) found that shapes of biotic and abiotic breaks could not be distinguished.Department of Zoology, University of Oxford, Reino UnidoInstitute of Earth Sciences, University of Lausanne, SuizaPaleoscience Research Centre School of Environmental and Rural Science, University of New England, AustraliaUnidad de Zaragoza, Instituto Geológico y Minero de España, EspañaUnidad Asociada en Ciencias de la Tierra, Universidad de Zaragoza, Españ

    Vertically migrating Isoxys and the early Cambrian biological pump.

    Get PDF
    The biological pump is crucial for transporting nutrients fixed by surface-dwelling primary producers to demersal animal communities. Indeed, the establishment of an efficient biological pump was likely a key factor enabling the diversification of animals over 500 Myr ago during the Cambrian explosion. The modern biological pump operates through two main vectors: the passive sinking of aggregates of organic matter, and the active vertical migration of animals. The coevolution of eukaryotes and sinking aggregates is well understood for the Proterozoic and Cambrian; however, little attention has been paid to the establishment of the vertical migration of animals. Here we investigate the morphological variation and hydrodynamic performance of the Cambrian euarthropod Isoxys. We combine elliptical Fourier analysis of carapace shape with computational fluid dynamics simulations to demonstrate that Isoxys species likely occupied a variety of niches in Cambrian oceans, including vertical migrants, providing the first quantitative evidence that some Cambrian animals were adapted for vertical movement in the water column. Vertical migration was one of several early Cambrian metazoan innovations that led to the biological pump taking on a modern-style architecture over 500 Myr ago

    Simulating and measuring structural intensity fields in plates induced by spatially and temporally random excitation

    Get PDF
    The structure-borne power in bending waves is well understood, and has been studied by man
    corecore